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1 Introduction

The use of antibodies in drug design has been a rapidly growing area of research for

the past 40 years, with hundreds of drugs now in clinical development for cancer and

cardiovascular therapies [1]. The success of this research has led to the production of 8

out of the top 20 biotechnology drugs on the market [2].

An antibody is a large y-shaped protein consisting of two main components, the constant

region (Fc), and the antigen/receptor binding region (Fab), as shown in Figure 1b. The

Fc binds to the surface of the cell and has similar properties amongst different antibodies

[3]. The Fab is a variable region with specific molecular functional groups which can

interact and bind to a given ligand [4]. The ability of these molecules to bind to highly

specific ligands forms the basis for adaptive immune response, leading, for example, to
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the neutralisation of harmful pathogens or viruses surrounding the cell such as bacteria

[5].

Monoclonal antibodies (mAbs) target one specific binding site on an antigen (Ag), called

an epitope. This mechanism works in a fashion similar to a lock and key mechanism in

which there is only one specific antigen that can fit into the binding site of any given

antibody. This specificity can be advantageous in drug design as increasing the selectivity

to the target of interest can improve therapeutics and help minimise harmful side effects of

drugs. In contrast, a polyclonal antibody contains many different antibodies potentially

interacting with different epitopes of a given antigen to produce varying cellular outcomes.

For the purposes of this study, only monoclonal antibodies will be considered.

Ligand and receptor interactions, such as the mAb and Ag example can be expressed

more generally using the reversible process

mAb+ Ag
kf−⇀↽−
kr

mAb · Ag, (1)

where kf and kr are rate constants for the forward and reverse reactions, respectively.

We define the associated equilibrium constant

KD =
kr
kf

=
[mAb][Ag]

[mAb.Ag]
,

where the square brackets indicate the concentrations of the respective species. Hence-

forth we drop the square brackets for convenience.

Three different modes of cell signalling are possible based on the source of the ligand

and its corresponding target receptor. In autocrine signalling, ligands bind to receptors

on the same cell from which they were secreted, thus establishing an autocrine loop.

In contrast, paracrine signalling involves ligands binding to receptors on adjacent cells.

Endocrine signalling is more complex with ligands being absorbed into the blood stream

by the endocrine gland. These ligands can then travel to other parts of the body to bind

to receptors on distant cells. The binding of ligands to receptors, forming receptor-ligand

complexes, can be represented by the reversible reaction

L+R
kf−⇀↽−
kr

L ·R, (2)

with equilibrium constant KD = kr
kf

= [L][R]
[L.R]

. This binding process competes with ligand

diffusion and decay.
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(a) Autocrine, paracrine, and endocrine signalling
(b) Antibody with
constant and vari-
able fragments

Figure 1: Schematics showing (a) types of signalling and (b) antibody structure

2 Aims

This project aimed to develop mathematical models of ligand-receptor interactions follow-

ing ligand secretion by cells. Building on this, it is envisaged that the models developed

could be expanded to include antibody-mediated interference, and thus used to compare

the situations where the mAb binds either to the ligand or receptor.

With regard to applying the results to industrial applications, useful calculations which

might be addressed using the model include calculation of the ligand secretion rate re-

quired to achieve, for example, 90% receptor occupancy on the cell surface in the absence

of mAbs, and calculation of the global mAb concentration and affinities required to reduce

receptor occupancy from 90% to 5%.

3 Methodology

3.1 Modelling the chemical reaction

We begin by considering the ordinary differential equation

dC(t)

dt
= kf (RT − C(t))L0 − krC(t), (3)

obtained from the reaction (2), where C = L · R represents the concentration of ligand-

receptor complexes, RT is the initial number of receptors on the cell surface, and L0 is

the number of ligands available for binding, which we initially assume to be fixed for

convenience. Thus the expression RT −C(t) represents the number of receptors available

for binding at time t. Assuming an initial concentration C(t = 0) = C0, we solve this
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equation using the appropriate integrating factor to find

C(t) =
kfRTL0

kr + kfL0

+ e−(kr+kfL0)t

(
C0 −

kfRTL0

kr + kfL0

)
. (4)

The steady state concentration is given by

lim
t→∞

C(t) =
RTL0

L0 +KD

,

and the time t∗ at which a particular value of the saturation concentration C∗ is reached

is given by

t∗ =
−1

kr + kfL0

ln

C∗ − kfRTL0

kr+kfL0

C0 − kfRTL0

kr+kfL0

 . (5)

3.2 Modelling ligand diffusion and decay

Assuming an idealised spherical geometry for the cell, we assume that the behaviour of

the system is identical in all directions, and so we may simplify the domain to be of one

spatial dimension x. We then define L(x, t) to be the concentration of ligands at position

x at time t > 0, so that the evolution of ligand concentration is governed by the partial

differential equation (PDE)

∂L(x, t)

∂t
= DL

∂2L(x, t)

∂x2
−KL(x, t), 0 < x <∞, (6)

where the first term on the right-hand side accounts for diffusion of ligands with constant

diffusivity DL, and the second for ligand decay at a constant rate K. We suppose that

there is a constant number of ligands being emitted from the surface of the cell at a flux

rate of JL, and that all of the ligands eventually decay as they move away from the cell,

giving the boundary conditions

−DL
∂L(x = 0, t)

∂x
= JL, t > 0, (7)

lim
x→∞

L(x, t) = 0, t > 0. (8)

We further suppose that there are no ligands present in the system initially, so that the

appropriate initial condition is

L(x, t = 0) = 0, 0 < x <∞. (9)
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Figure 2: Evolution of ligand concentration L(x, t) for fixed position values (left) and
fixed time values (right), in the case where K = 0, i.e. no decay is present

The system of equations (6)-(9) may then be solved using a Laplace transform to obtain

L(x, t) =
JL
2

√
DL

K

[
e2
√
Kx2/D erf

(
2
√
Kt+

√
x2/D

2
√
t

)

−e2
√
Kx2/D + 1 + erf

(
2
√
Kt−

√
x2/D

2
√
t

)]
e−
√
Kx2/DL , (10)

where erf(z) is the error function.

3.3 Combining reaction with diffusion and decay

We now combine the calculations outlined in the previous two sections to assemble a

model describing both the reaction of ligands and receptors, and ligand diffusion and

decay. Since ligand-receptor binding only occurs in the presence of receptors, which are

located on the cell surface, we restrict the binding process to a domain close to the cell

surface at x = 0. The binding domain is defined to be of length ∆x, and for convenience

we assume that the domain over which diffusion and decay occurs is of finite length d,

with ∆x� d.

Diffusion,
Binding, Diffusion,
Decay Decay

x = 0 x = ∆x x = d

Figure 3: Schematic of domains for diffusion, binding, and decay
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We define L1(x, t) to be the concentration of ligands in 0 < x < ∆x, C(x, t) to be

the concentration of receptor-ligand complexes in 0 < x < ∆x, and L2(x, t) to be the

concentration of ligands in ∆x < x < d. The diffusion and decay of ligands and the

binding of ligands with receptors is then described by the system

∂L1(x, t)

∂t
= DL

∂2L1(x, t)

∂x2
−KL1(x, t)− kf (R0 − C(x, t))L(x, t) + krC(x, t), 0 < x < ∆x,

(11)

∂C(x, t)

∂t
= kf (R0 − C(x, t))L1(x, t)− krC(x, t), 0 < x < ∆x, (12)

where DL is the constant diffusivity of the ligands, and we have assumed a fixed initial

concentration of free receptors R0, so that R = R0 − C(x, t) is the current receptor

concentration. The equation describing diffusion and decay outside of the binding region

is

∂L2(x, t)

∂t
= DL

∂2L2(x, t)

∂x2
−KL2(x, t), ∆x < x < d. (13)

The appropriate boundary and initial conditions on L1, L2 and C are

L1(x = ∆x, t) = L2(x = ∆x, t), t > 0, (14)

∂L1(x = ∆x, t)

∂x
=
∂L2(x = ∆x, t)

∂x
, t > 0, (15)

∂L1(x = 0, t)

∂x
= −JL, L2(x = d, t) = 0, t > 0, (16)

L1(x, t = 0) = 0, 0 < x < ∆x, (17)

L2(x, t = 0) = 0, ∆x < x < d, (18)

C(x, t = 0) = 0, 0 < x < ∆x. (19)

3.4 Non-dimensionalisation

We now proceed by using dimensional analysis to reduce the number of parameters ap-

pearing in the model presented above. We nondimensionalise the lengthscale with the

domain length d, the timescale with d2

DL
, and the concentrations with the equilibrium

constant KD, so that the nondimensional variables and concentrations are given by

x′ =
x

d
, t′ =

DL

d2
t, L′1 =

L1

KD

, L′2 =
L2

KD

, C ′ =
C

KD

.
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Substituting these into equations (11)-(13) and dropping the primes for convenience yields

the nondimensionalised system of equations

∂L1(x, t)

∂t
=
∂2L1(x, t)

∂x2
− βL1(x, t)− α [(γ − C(x, t))L1(x, t)− C(x, t)] , 0 < x < ε,

(20)

∂C(x, t)

∂t
= α [(γ − C(x, t))L1(x, t)− C(x, t)] , 0 < x < ε, (21)

∂L2(x, t)

∂t
=
∂L2(x, t)

∂x2
− βL2(x, t), ε < x < 1, (22)

with nondimensional parameters

α =
krd

2

DL

, β =
Kd2

DL

, γ =
R0

KD

, ε =
∆x

d
, Q = −JLd

KD

.

The corresponding nondimensionalised boundary and intial conditions are

L2(x = ε, t) = L1(x = ε, t),
∂L2(x = ε, t)

∂x
=
∂L1(x = ε, t)

∂x
, t > 0, (23)

∂L(x = 0, t)

∂t
= Q, L(x = 1, t) = 0, t > 0, (24)

L1(x, t = 0) = 0, 0 < x < ε, L2(x, t = 0) = 0, ε < x < 1, (25)

C(x, t = 0) = 0, 0 < x < ε. (26)

We remark that the parameters α and β are Damköhler numbers, measuring the ratios

of timescales for different phenomena, with

α =
krd

2

DL

=
d2/DL

1/kr
,

the ratio of the diffusion timescale and the reverse reaction timescale, and

β =
Kd2

DL

=
d2/DL

1/K
,

the ratio of the diffusion timescale and the ligand decay timescale. We summarise the

dimensional parameter values in Table 1 and give the corresponding nondimensional

parameter values in Table 2.
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Parameter Meaning Value

kf forward binding rate 103 m3/mole·s

kr reverse binding rate 10−6s−1 < kr < 10−3s−1

K ligand decay rate 10−4s−1

d domain length 10−3m

DL Diffusion coefficient 4× 10−11m2s−1

R0 Initial receptor concentration 1/3× 10−3 moles/m3

∆x binding domain length 10−6m

JF flux of receptors at x = 0 undetermined

Table 1: Values of the dimensional parameters

Parameter Value

α 0.025 < α < 25

β 2.5

γ 300 < γ < 3× 105

ε 10−3

Q undetermined

Table 2: Values of the nondimensional parameters
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j L2(x, t) ≈ L2

k
j

1131141151161171181191201211220 ε 1

0 1 ... ... N

N N + 1 ... ... M

Figure 4: Space discretisation for the finite difference scheme

3.5 Finite difference solution

Having obtained the nondimensional model given by Equations (20)-(26), we are now in

a position to seek a numerical solution. We discretise the system of equations on each do-

main by adopting a forward-time, centred-space difference approximation for L1, L2, and

C. We divide the domain 0 < x < ε into N intervals corresponding to j = 0, 1, 2, . . . , N

discrete space points, and divide ε < x < 1 into M − N intervals corresponding to

j = N,N + 1, . . . ,M − 1,M discrete space points. The lengths of the steps are then

given by δx1 = ε
N

for the first interval, and δx2 = 1−ε
M−N for the second interval. We

approximate the derivatives of L1 by

∂L1

∂t
≈
L1

k+1
j − L1

k
j

δt
,

∂2L1

∂x2
≈
L1

k
j−1 − 2L1

k
j + L1

k
j−1

(δx1)2
,

with similar approximations for the derivatives L2(x, t) and C(x, t), where δt is the

timestep to be determined by considering the stability of the method.

Substitution of these approximations into the model equations leads to the system of

difference equations

L1
k+1
j = L1

k
j +

δt

(δx1)2
(
L1

k
j+1 − 2L1

k
j + L1

k
j−1
)
− δtβL1

k
j − αδt

[
(γ − Ck

j )L1
k
j − Ck

j

]
,

(27)

Ck+1
j = Ck

j + αδt
[
(γ − Ck

j )Lkj − Ck
j

]
, (28)

L2
k+1
j = L2

k
j + +

δt

(δx2)2
(
L2

k
j+1 − 2L2

k
j + L2

k
j−1
)
− δtβL2

k
j . (29)
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with the boundary and initial conditions

L1
k+1
1 = L1

k
1 +

δt

(δx1)2
(
L1

k
2 − 2L1

k
1 − (Qδx1)

)
− δtβL1

k
1 − αδt

[
(γ − Ck

1 )L1
k
1 − Ck

1

]
,

L1
k+1
N = L1

k
N +

δt

(δx1)2

((
L2

k
2 − L2

k
1

δx2

)
δx1 − L1

k
N + L1

k
N−1

)
− δtβL1

k
N − αδt

[
(γ − Ck

N)L1
k
N − Ck

N

]
,

L1
1
j = 0,

C1
j = 0, L2

k+1
1 = L1

k+1
N ,

L2
k
M−N+1 = 0, L2

1
j = 0.

The equation determining the timestep is

δt = CFL · 1
2

min{δx1,δx2}2 − αγ − β
,

where CFL = 0.9 is chosen to satisfy the Courant-Friedrichs-Lewy condition for conver-

gence, which in this case reads CFL ≤ 1.

3.6 The method of lines

The method of lines is a semi-analytical method for numerically solving PDEs, whereby

PDEs are converted into ODEs by discretising in only one direction (here, space) using

finite different methods while using analytical solutions in the remaining direction (time).

This leads to efficient computations, easier stability and convergence conditions, reduced

programming effort and reduced computational time.

Applying the method of lines to Equations (20-21) we get the system of ODEs

dL1

dt
=

1

(δx1)2
(
L1j+1 − 2L1j + L1j−1

)
− βL1j − α

[
(γ − Cj)L1j − Cj

]
, (30)

dC

dt
= α

[
(γ − Cj)L1j − Cj

]
, (31)

dL2

dt
=

1

(δx2)2
(
L2j+1 − 2L2j + L2j−1

)
− βL2j. (32)

The associated boundary conditions are given by the ODE

dL1

dt
=

1

(δx1)2
(2L12 − 2L11 − 2(Qδx1))− βL11 − α [(γ − C1)L11 − C1] at x = 0, (33)
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and the three algebraic equations

L1N = L1N−1 +
δx1
δx2

(L22 − L21) at x = ε, (34)

L1N = L21 at x = ε, (35)

L2N = 0 at x = 1, (36)

and the initial conditions are

L1j = Cj = L2j = 0. (37)

3.7 Some limiting cases

Here we seek to simplify the model equations by examining the values of the parameters

appearing in the model. Observing that the product αγ, measuring the ratio of the

diffusion timescale and the forward reaction timescale, has value 7500 � 1, it is clear

that binding occurs on a much faster timescale than diffusion. We use this rapid binding

approximation to reduce the coupled system of equations in 0 < x < ε to a single PDE

with effective concentration-dependent diffusivity. Dividing Equation (21) by αγ and

setting the left-hand side equal to zero gives(
1− C

γ

)
L− C

γ
= 0, (38)

which we rearrange to obtain

C(L) =
γL

1 + L
. (39)

Adding Equations (20) & (21) produces

∂T

∂t
=
∂2L

∂x2
− βL. (40)

where we define T to be the total concentration of complexes and unbound ligands,

T = L+ C(L). (41)

Using the chain rule, we rewrite Equation (40) as

∂T

∂t
=

∂

∂x

(
dL

dT

∂T

∂x

)
− βL (42)
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It remains to calculate dL
dT

. Substituting the expression for C(L) obtained in Equation

(39) into Equation (41) and rearranging gives a quadratic equation for L, which has

solutions

L = −1

2
(1 + γ − T )± 1

2

√
(1 + γ − T )2 + 4T . (43)

We take the positive case, since the negative case does not give a physically meaningful

solution. Differentiating this with respect to T gives

dL

dT
=

1

2
+

(T − γ + 1)

2
√

(1 + γ − T )2 + 4T
= W (T ), (44)

which gives
∂T

∂t
=

∂

∂x

(
W (T )

∂T

∂x

)
− v(T ), (45)

where W (T ) = dL(T )
dT

is the concentration-dependent diffusivity. Thus in the limit αγ � 1,

the system of coupled equations (20)-(21) reduces to the single equation (45) for the

concentration-dependent diffusivity. The evolution of the concentration-dependent diffu-

sivity W (T ) for various values of γ is shown in Figure 5. Finally, we consider the two

limiting cases when γ = 0 and γ →∞. When γ = 0, we have

∂L

∂T
= 1,

and the equation governing W (T ) then reduces to

∂T

∂t
=
∂2T

∂x2
− βL,

so that diffusion and ligand decay dominate. On the other hand, when γ →∞, we have

∂L

∂T
= 0

and the equation governing W (T ) reduces to

∂T

∂t
= −βL,

so that ligand decay is the dominant phenomenon.
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Figure 5: Evolution of diffusivity W (T ) for various values of γ

4 Results

4.1 Receptor occupancy

Using Equation (5), we may calculate the time taken to reach a receptor occupancy of

90% initial concentration, that is, C∗ = 0.9RT . Taking, for example, L0/KD = 300 gives

a time of approximately 8 s for kr = 10−3 s−1 and a time of approximately 2 hours for

kr = 10−6 s−1. A log-log plot of time taken to reach 90% receptor occupancy for various

values of L0/KD is given in Figure 6.

4.2 Model results

The nondimensional model obtained in Section 3.4 was solved numerically using the finite

difference method outlined in Section 3.5. The results obtained are shown in Figures 7 and

8, where we have plotted L1(x, t)/γ, L2(x, t)/γ, and C(x, t)/γ. The model equations

were also solved using the method of lines, described in Section 3.6. The system of

differential algebraic equations (30-37) was solved using the built-in Matlab function

ode15s, a variable-step, variable-order (VSVO) solver based on numerical differentiation

formulas of orders 1 to 5. The solutions obtained for L1(x, t), L2(x, t), and C(x, t), with

N = M = 101, are shown in Figures 9a-9c.
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5 Conclusions and Future Work

In this report, we have developed a model accounting for receptor-ligand binding and

ligand diffusion and decay. We have used a finite difference method to solve the full non-

linear model equations, and we have also examined some limiting cases of the model. The

results obtained in each stage agree with expected behaviour as observed experimentally.

Future work and further iterations of the model should include the role of antibodies.

Further insights might be gained by taking the diffusivity and flux to be variable instead

of fixed quantities. The model could also be expanded to account for for paracrine and

endocrine singnalling, which has not been examined here.
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