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Differential equations provide a powerful way of modelling an observed system by providing
it with a mathematical description. Examples of the systems differential equations model range
from predator-prey interactions in ecosystems (see Lotka (1932) [26]), fluid mechanics where
systems can be chaotic (i.e. slightly differing initial states can evolve into considerably different
states, for example Lorenz (1963) [25] and Strebel (2013) [40]), diffusion - which can be used to
describe the mobility of molecules (e.g. Fick (1995) [13]), activation/deactivation of spiking neu-
rons (see FitzHugh (1961) [15]), financial market prices in econometrics (for example Alexander
et al. (2012) [1]) and particle physics (for example Tomé and Oliveira (2015) [42]). However, the
act of inferring the parameters that govern the equations from noisy data, especially in a timely
fashion, is challenging.

A typical approach to assessing how well these methods perform is to generate synthetic
data by solving the equations once and adding noise to reflect observational error. In this way,
since the parameters that generated the data are known, one can quantify how well the method
performed, subject to some assessment criteria. However, by using simulated data we usually
retain knowledge of the system that wouldn’t be available from a real experiment, which may
distort our assessment to how a particular method performs when applied in practice.

Cside (Competitive statistical inference for differential equations) is a competitive framework
for comparing methods that infer the parameters of differential equations. It challenges partic-
ipants to infer the parameters from systems described by differential equations in a blinded
fashion and thereby more fairly judge the performance of a method. Since participants were
competing against one another, this acted as a method of filtering out approaches that would
perform more poorly. In this way, we are able to gain an understanding as to how well the
current state-of-the-art performs when dealing with these types of systems, providing guidance
as to how to tackle these problems in practice.

Participants were first given access to three biological models described by differential equa-
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tions, along with code and instructions for generating test datasets. They had two months to
familiarise themselves with the systems, test/configure their methods, before competition data
was released. Each participant then received a dataset generated from their chosen model/s,
where the parameter generating values were known only to the event organiser. Some infor-
mation about the systems were made available (see Section 2 for details) in order to mimic
experimental and prior information that might be available from experts in the field. Partici-
pants had one and a half weeks to submit their parameter estimates. This amount of time was
chosen to ensure there was sufficient challenge and similarity with respect to the time constraints
present when applying these methods in practice, whilst also taking into account entrants’ differ-
ent schedules in order to maximise engagement with the event and see/analyse as many different
methods as possible.

The structure of this paper is as follows. In Section 1, a description of the biological models
that were used during the challenge will be provided. Participants had access to a set of Ordinary
Differential Equations (ODEs) that describe cardiac electrical excitation, a Partial Differential
Equation (PDE) system describing blood pressure and flow in the pulmonary arteries and a
set of Stochastic Differential Equations (SDEs) describing the behaviour of cells migrating as
a response to chemotaxis, based on a pseudopod-centred mechanism. By including an ODE,
PDE and SDE system, we hope to obtain results that can inform how to approach analysis in
practice in the wider research area where systems are described by differential equations. Section
2 describes the simulation set-up of the problems posed to participants. Parameter value choices,
levels of observational noise, as well as which variables are observable, can all be found in this
section. Sections 3 - 4 contain the methodological descriptions and results, respectively, for the
qualifying methods (first three participants for models 1 and 2 and first two participants for
model 3 and the additional challenge).

1 Models

1.1 Model 1: A model of cardiac electrical excitation

Model 1 is a simplified model of the electrical potential of cardiac cell membranes [5]. Cardiac
cell membranes are composed of a biphospholipid layer protruded by voltage-gated ion channels,
e.g. see [8]. The layer is impermeable to charged particles thus supporting a non-zero equilibrium
voltage potential across the membrane. The ion channels are large proteins that open and close
depending on the instantaneous value of the voltage and allow in/outflow of ion currents. When
“excited”, i.e. driven away from equilibrium, these structures cause the formation of a large
transmembrane voltage transient known as an action potential. The action potential serves as
a signal for cardiac cells to contract and thus controls the heartbeat – the main function of a
living heart. To a first approximation the cell membrane is modelled as an electrical circuit of a
capacitor Cm (the biphospholipid layer) and an active resistor supporting ionic currents Iion (the
ionic channels) connected in parallel, giving the ordinary differential equation CmĖ = Iion for the
voltage E(t) [24]. The electrophysiological complexity of the cardiac membrane is encapsulated
by the models of the ionic current Iion. The current is due to a large number of ionic currents
each flowing through their own dedicated population of channels with distinct dynamics. Along
with ion channels, pumps and exchangers also transport ions across the membrane using active
processes rather than passive diffusion. Over the last 60 years, models have been developed for
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the action potential of various types of cardiac cells, various animal species, and for healthy and
pathological situations, with many contemporary models being very large systems of ordinary
differential equations including hundreds of parameters to be determined experimentally [37].

Despite their differences and complexity most models of cardiac action potentials have similar
underlying mathematical structure [6]. Model 1 is a simplified model in the sense that it preserves
the typical asymptotics of cardiac equations and thereby captures essential aspects of cell AP
models. The model is obtained from the Noble equations for Purkinje fibers [30] using a set
of verifiable simplification steps [5]. It has been used to derive asymptotic expressions for the
conduction velocity restitution in cardiac tissues [39], to elucidate the conditions for propagation
and block of excitation in the atria [38], to understand the formation of excitation waves [4], and
to study cellular alternans. The model contains 3 state variables, the transmembrane voltage
potential E(t), and the gating variables h(t) and n(t) describing the inactivation of the fast
inward and slow outward currents, respectively, coupled by the non-linear ordinary differential
equations,

dE

dt
=

1

ϵ1ϵ2
GNa(ENa − E)H(E − E∗)h+

1

ϵ2

(
g2(E)n4 +G(E)

)
, (1a)

dh

dt
=

1

ϵ1ϵ2
Fh

(
H(E† − E)− h

)
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dn
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=Fn(E)

(
H(E − E†)− n

)
. (1c)

Here H(.) denotes the Heaviside step function and the rest of the functions prescribing the
dynamics are given by

g2(E) = g21H(E† − E) + g22H(E − E†),

Fn(E) = fn(rH(E† − E) +H(E − E†)),

E2 = (k1/k2 + 1)E† − E1k1/k2,

E3 = (k2/k3 + 1)E∗ − E2k2/k3,

G(E) =


k1(E1 − E), E ∈ (−∞, E†),

k2(E − E2), E ∈ [E†, E∗),

k3(E3 − E), E ∈ [E∗,+∞).

The model contains 12 parameters,

θ = [k1, k2, k3, E1, ENa, E†, E∗, Fh, fn, GNa, g21, g22]
T .

At the default parameter values used in [39], the following initial conditions lead to a fully-
developed action potential

E(0) = Estim ≥ E∗, h(0) = 1, n(0) = 0. (2)

To understand the behaviour of the solution and the natural parameter ranges it is useful to
consider the asymptotic phase portrait of the model shown in Figure 1 (also see [5]). Equations
(1) contain two small parameters formally ordered as 0 ≪ ϵ1 ≪ ϵ2 ≪ 1. In the limit of ϵ1 → 0+
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Figure 1: The phase portrait of the fast system (left panel) and the slow system (right panel) of
caricature model. The blue dashed line is the nullcline of h(t) in the fast system and n(t) in the
slow system. The solid red lines and the cross-hatched region in the left and right panels are the
horizontal nullclines of E(t). The dotted black lines with attached arrows are the trajectories.
The dotted green line is the corresponding action potential, Edag = E†.

a super-fast system is obtained with a phase portrait shown in the left panel of Figure 1. If
Estim ≥ E∗, then the super-fast subsystem is activated and generates a fast upstroke. If the
Estim is smaller than this threshold value, then the dynamics is governed only by the slow
subsystem. In the limit ϵ2 → 0+ the slow system splits further into a fast and a slow part
with phase portraits shown in the right panel of Figure 1. It features a slow manifold divided
into three parts, a ‘systolic’ branch, ‘diastolic’ branch, and a threshold branch. When Estim is
above the threshold branch the trajectory will be attracted to the upper systolic branch and will
slowly follow it until it ends, it will then make a fast jump to the diastolic branch and follow
this towards global equilibrium to complete one action potential transient. For the purposes of
the event, ϵ1 and ϵ2 were held fixed at the value 1, recovering the original system of Biktashev
et al. [5].

Numerical codes in various languages (Matlab, C++, Fortran and Python) for this model
are available on GitHub1.

Model 1 poses a numerically stiff problem. We recommend setting the relative tolerance to
10−5 when using an adaptive time step solver to solve Equations (1). Setting larger tolerances
leads to undesired effects on the likelihood landscape, as demonstrated in Figure 2.

1.2 Model 2: A 1D fluid dynamics model of the pulmonary circulation

Model 2 is a one-dimensional (1D) fluid dynamics model of pulse wave propagation in a branching
network of compliant blood vessels [32]. For this study, the model is tailored to predict time
varying blood pressure and flow at any location in a 21-vessel pulmonary arterial tree for a
male C57BL6/J control mouse (see Fig. 3) [11, 35]. Each vessel within the network is modelled

1https://github.com/hifzhudin/CaricNobleModel
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Figure 2: Effect of ODE solver tolerance setting in the likelihood surface. Note that a coarse
tolerance level (relative tolerance 10−3) can introduce bumps, spikes and many local maxima
in the likelihood surface and shift the peak of the global maximum likelihood. A more refined
solution (relative tolerance 10−5) is required to give an accurate likelihood surface.

as a thin-walled, linearly elastic, axisymmetric surface of revolution having constant length L
and dynamic radius R. Geometric properties including vessel dimensions (i.e. reference radius
r0 (cm) and length L (cm)) and network connectivity are extracted from a micro-computed
tomography (micro-CT) image of an excised lung [35], whereas dynamic flow and pressure are
measured in-vivo. The model is governed by a hyperbolic system of non-linear partial differential
equations (PDEs) formulated in cylindrical polar coordinates (r, θ, x), obtained by averaging the
continuity and Navier-Stokes equations over each vessel’s cross-sectional area, giving

∂A

∂t
+

∂q

∂x
= 0,

∂q

∂t
+

∂

∂x

(
q2

A

)
+

A

ρ

∂p

∂x
= −2πνr

δ

q

A
, (3)

where 0 ≤ x ≤ L and 0 ≤ t ≤ T denote the axial and temporal coordinates with T being the
length of the cardiac cycle (assumed constant, T = 0.11 s), p(x, t) denotes the transmural blood
pressure (mmHg), q(x, t) is the volumetric flow rate (ml/s), A(x, t) = πR(x, t)2 (cm2) is the
vessel cross-sectional area, and R(x, t) (cm) is the radius. The blood density ρ = 1.057 (g/ml),
the kinematic viscosity ν = 0.0462 (cm2/s), and the boundary layer thickness δ = 0.03 (cm) are
assumed constant. To close the system of equations (3), we prescribe a so-called tube-law, a
mathematical relation between the cross-sectional area A and the transmural pressure p. By
assuming a linear stress-strain relation between the vessel wall and the transmural pressure, we
can model the spatial pressure in a given vessel as

p− p0 = Eh/r0

(√
A/A0 − 1

)
, (4)

where p0 = 0 is the constant external pressure acting on the vessel wall, A0 = πr20 is the vessel
cross-sectional area at the reference pressure (p = p0), E is the Young’s modulus (mmHg) and
h is the wall thickness (cm) such that h ≪ r0. Assuming a constant E and h/r0 throughout the
network, the ratio Eh/r0 is considered one parameter that describes the vessel wall stiffness.

Numerical integration of (3), coupled with (4), requires boundary conditions at the network
inlet, outlets, and each vessel junction (i.e. each vessel bifurcation). We impose a measured
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inflow qin(t) at the inlet of the first vessel and assume conservation of flow and continuity of
pressure at each bifurcation, i.e.

qp(L, t) = qd1(0, t) + qd2(0, t), pp(L, t) = pd1(0, t) = pd2(0, t), (5)

where the subscript p denotes the parent vessel and the subscripts d1, d2 represent the two
daughter vessels. The outflow boundary conditions at the outlet of each terminal vessel are
imposed via a three-element Windkessel (3-WK) [35], analogous to an electrical circuit with two
resistors in series and a capacitor in parallel. The 3-WK boundary condition is modelled by the
first order ODE

dp

dt
−R1

dq

dt
= q

(
R1 +R2

R2CT

)
− p

R2CT
, (6)

where R1 and R2 denote proximal and distal resistances (mmHg s/ml) of the vascular region
beyond the point of truncation. The sum R1 + R2 gives the total vascular resistance RT , and
CT denotes the total peripheral compliance (ml/mmHg) of the same region. Finally, we assume
that predictions are periodic, that is the pressure and flow are repeated at the onset of each
cardiac cycle. Details of how the model parameters are initialised and optimised can be found
in [11] and [35].

In this study, we wish to infer the vessel stiffness (Eh/r0). To make the problem computa-
tionally tractable, we assume that stiffness is constant throughout all 21 vessels. In addition,
we consider the use of the scaling factors r1, r2 and c, which scale the nominal values of the
3-WK parameters (i.e. R̂1 = r1R

nom
1 , R̂2 = r2R

nom
2 , and ĈT = cCnom

T ). For more details
on this method, see [11]. For this problem, the scaling factors are set to r1 = 2.0193 × 10−1,
r2 = 8.8890 × 10−1, and c = 1.4665 × 100. More information about the calculation of nominal
values for this model and the use of scaling factors can be found in [11, 35].

Variable Meaning Value Units
p0 reference pressure 0 mmHg
r0 reference radius vessel dependent cm
ν kinematic viscosity 0.0462 cm2/s
δ boundary layer thickness 0.03 cm
ρ blood density 1.057 g/ml
T heart rate 0.11 s
E Young’s modulus estimated mmHg
h wall thickness estimated cm
Ri

1 proximal resistance for terminal vessel i vessel dependent mmHg s/ml
Ri

2 distal resistance for terminal vessel i vessel dependent mmHg s/ml
Ci

T compliance for terminal vessel i vessel dependent ml/mmhg
r1 proximal resistance scaling factor 2.0193× 10−1 dimensionless
r2 distal resistance scaling factor 8.8890× 10−1 dimensionless
c1 compliance scaling factor 1.4465 dimensionless

Table 1: Variables of System (3)–(4) for Model 2 [43].
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Figure 3: (Left) True model predictions (red curves) along with noise induced signal (black
curves) in the main, left, and right pulmonary arteries (MPA, LPA, and RPA, respectively);
(Right) 21 vessel network from a control mouse with 3 element Windkessel models attached to
each terminal vessel. Flow data in the MPA is used as an input to the model.

1.3 Model 3: A pseudopod-centred model of eukaryotic chemotaxis

Model 3 is representative of the pseudopod-centred view of single cell chemotaxis [2], in which
directional decision-making is an emergent property of competition between multiple mem-
brane patches demonstrating cytoskeletal activity. The central idea is that some auto-activating
molecule (or system of molecules) referred to as the local activator (LA) drives the membrane in
the outward normal direction, and that its accumulation is biased by external chemoattractant
signals. In addition to the local activator, a local inhibitor (LI) destabilises dominant patches of
activator to encourage dynamic reorientation to changing signals, and a fast-diffusing, global in-
hibitor (GI) allows distal regions of activator to compete. Finally, tension retracts the boundary
normally to maintain a preferred cell size, allowing the cell to move rather than simply expand
(see Fig. 4 for example images of this model as it evolves). The system evolves according to the
following equations:
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Figure 4: Example frames from model 3 simulation (A) Three stills of a running simulation
are shown. The strength of the local activator signal is displayed around the perimeter in green,
and the value of the global inhibitor is displayed in red. The membrane changes shape in
response to these signals, with protusions clearly visible in areas with high concentrations of the
local activator.

∂ta = Da∆Γa+
s(a2/c+ ba)

(kM + b)(1 + s2a)
− daa, (7)

∂tb = Db∆Γb+ kba− dbb, (8)

∂tc =
rc
|Γ|

∮
Γ

adx− rca, (9)

s(x, t) = 1 + drRND+

(
C(x, t)

C(x, t) + kd

)
(1 + drRND) , (10)

∂tΓ = (faa(x, t)− λ(A−A0)) Γ̂(x, t), (11)

where (7), (8) and (9) describe the evolution of the local activator (LA), local inhibitor (LI)
and global inhibitor (GI), respectively, (10) represents the stimulus strength in terms of external
concentration C at point x and time t, while (11) defines the evolution of the boundary line
Γ(x, t) of the cell, with Γ̂(x, t) denoting the outward normal of of the boundary and |Γ| being the
total length of the boundary. RND in (10) is a noise term introduced to break the symmetry of
the system to allow for pseudopod formation, uniformly drawn from (0, 1), with dr controlling
its magnitude. For a more complete discussion of this model, see [29].

Simulations implementing this model output time series for LA, LI, GI and membrane shape
(a series of x,y coordinates for sample points on the membrane). The aim is to infer from these
time series the values of 10 parameters:

θ = (fa, rc, kb, db, Db, kM , sa, ba, Da, da)
T ,

The remaining parameters of the system are treated as fixed. For a full table of parameters
see Table 2.

The key challenge of model 3 is that it is an SDE and so evolves stochastically. Repeat
simulations with identical parameters can therefore lead to quite different results. In practical
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experiments, there are limitations on observing the biochemistry of the cell. In contrast, its
boundary is readily observable using light microscopy. As such, the additional challenge for
model 3 is to infer the parameters from the boundary coordinates alone, reflecting the initial
role of this simulation in explaining cell shape as a response to external chemotactic factors [44].

Parameter Meaning Default value θ̃
fa rate of the outward force from LA 0.0015
rc response speed of GI 0.07
kb birth rate of LI 0.0028
db death rate of LI 0.013
Db diffusivity of LI 0.045
kM Michaelis-Menten-like constant for LI 0.16
sa variable controlling saturation of LA 7.0E-5
ba basal production level of LA 0.1
Da diffusivity of LA 0.025
da the death rate of LA 0.02

Table 2: Parameters of System (7)–(11) to be inferred for Model 3 and Additional Challenge as
specified by [43].

2 Simulation

2.1 Model 1 (cardiac electrical excitation)

There are three observed variables; E (the transmembrane voltage), h (a gating variable) and n
(another gating variable), and 12 parameters to infer; k1, k2, k3, E1, ENa, E†, E∗, Fh, Fn, GNa,
g21 and g22. Recall that ϵ1 and ϵ2 were kept fixed at the value 1 for this event to recover the
system as outlined in Biktashev et al. [5].

When solving the system of equations using the parameter values defined in Simitev and
Biktashev [39] and ode15s in Matlab, 205 points are chosen by the solver (in order to ensure
there is enough resolution over the course of the signal). Changing the parameters would cause
the solver to choose a new spacing for the time points, which is unsuitable for scoring in this
event (since participants would have different time courses/number of time points associated
with their results). Hence, 205 points were simulated over the time domain [0,900], with 150
points linearly spaced between [0,300] to ensure there was enough coverage in the region where
the signals exhibited high variance and the remaining 55 points linearly space between [301,900]
where the signals plateaued. This time course was kept fixed for the event.

The parameter values were chosen to between 0.5 and 4 times literature values taken from
Simitev and Biktashev [39]. This ensured that the simulated data consisted of signals that were
biologically plausible, but different enough to the those produced by Simitev and Biktashev [39]
(which was highlighted to the participants as a resource for the model).

Note that the default tolerance level of 1e−3 in Matlab for solving the ODEs (using ode15s)
was too large for this model, causing numerical error in the solution to be large. The subsequent
likelihood landscape would cause optimisers/samplers to perform poorly. To avoid this, a toler-
ance level of 1e−5 was used to generate the event data. Once data were generated for E, h and
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Parameter Value Parameter Value

k1 0.12 k2 0.1
k3 0.3 E1 -65
ENa 60 E† -60
E⋆ -20 Fh 0.25
Fn 0.015 GNa 50
g21 -7 g22 -5

Table 3: Data generating parameters for Model 1 (coupled ODEs describing cardiac electrical
excitation).

n, a signal to noise ratio (SNR = variance(signal)/variance(noise)) of 10 was used to corrupt the
output with Gaussian white noise, so as to imitate experimental error.

2.2 Model 2 (vessel stiffness in pulmonary circulation)

There are two observed variables, p (blood pressure) and q (blood flow), and one parameter to
infer (Eh

r0
, the vessel stiffness). Although there are many branches in the pulmonary arterial tree,

the model predicts quantities of interest in the first 21 arteries. In order to ensure that inference
for this system was feasible in the time frame of the event, observations were constrained to the
first three vessels. The system is observed over time (t) and space (x) (recall that Model 2 is a
PDE system). The time points were uniformly spaced between 0 and T , where T is the length
of the cardiac cycle (assumed constant at T = 0.11s), in increments of 1.34x10−5s (to 2dp). The
spatial points were uniformly spaced in increments of 2.5x10−2cm between 0 and L, where L
is the vessel length and changes depending on which vessel is considered (0.41cm, 0.445cm and
0.372cm for vessels 1-3 respectively). From these spatial points, one spatial location is considered
for each vessel (the midpoint of the discretised values of x for each vessel respectively). This
resulted in 8192 datapoints for each vessel which was subsampled by taking every 8th point to
match the dimensionality (1024 points) of real data, see Vanderpool et al. [45], Tabima et al.
[41] and Colebank et al. [11] for details. This approach ensured convergence of the numerical
methods used for solving the PDEs, whilst mimicking real-world data experiments.

The range of values for the parameter Eh
r0

that result in a valid PDE solution is [104, 105]
and hence the data generating parameter was chosen within this space.

Parameter Value

Eh/r0 75000

Table 4: Data generating parameters for Model 2 (PDEs describing vessel stiffness in pulmonary
circulation).

Once data were generated for p and q, an SNR of 10 was used to corrupt the output with
Gaussian white noise, so as to imitate experimental error.
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2.3 Model 3 (eukaryotic chemotaxis)

2.3.1 Fully observable model

Since model 3 is a Stochastic Differential Equation (modelling cells migrating as a response to
chemotaxis, based on a pseudopod-centred mechanism), inferring the parameters of this system
is very challenging. In order to ensure that the parameters could be inferred during the time
constraints imposed by the event, an assumption was made that all output from this model is
measurable. Therefore the observed variables are the global inhibitor (GI), local inhibitor (LI),
local activator (LA), stimulus strength, x co-ordinate and y co-ordinate of each finite element
node of the boundary line. As it is unlikely to observe the GI, LI, LA and stimulus strength in
practice, an additional challenge for this model was posed, where only the x and y co-ordinates
are observed. Please see Section 2.3.2 for more details on this additional challenge.

There are 10 parameters to be inferred; fa, rc, kb, db, Db, kM , sa, ba, Da and da. The units
(u) for time are arbitrary and time increments with a step size of 0.1u between [0.1u,100000u].
The code samples every 100u (evenly spaced), resulting in 1000 timepoints in total. The spacing
is therefore 0.1u, 100.1u, 200.1u, 300.1u, ... , 99900.1u and was not changed by participants.

The true parameters chosen for this model were between 0.5 and 3 times the default values
in Table 2 (the participants were aware of these default values). This posed a difficult task to
the participants, whilst still reflecting observations that could be seen in practice.

Parameter Value Parameter Value

fa 0.0032 rc 0.05
kb 0.0035 db 0.013
Db 0.06 kM 0.3
sa 8e−5 ba 0.3
Da 0.025 da 0.025

Table 5: Data generating parameters for Model 3 (SDEs describing eukaryotic chemotaxis, with
all variables fully observed).

The SNR used to corrupt the output with Gaussian white noise was 100,000 (representing
the precision of the equipment used to take measurements for this problem in practice) for each
model output (GI, LI, LA, stimulus strength, x co-ordinate and y co-ordinate).

2.3.2 Additional challenge

As previously mentioned, the assumption that all the variables in model 3 are measurable is
unrealistic in practice and is such, data was additionally made available from model 3, where
only the x and y co-ordinates were observed. The data were simulated exactly as described in
Section 2.3.1, but using different true parameters (as shown in Table 6) and with participants
only obtaining the observations of the x and y co-ordinates. The true parameters chosen for this
additional challenge were between 0.5 and 3 times the default values in Table 2 (the participants
were aware of these default values). This posed a difficult task to the participants, whilst still
reflecting observations that could be seen in practice.
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Parameter Value Parameter Value

fa 0.004 rc 0.09
kb 0.002 db 0.01
Db 0.05 kM 0.1
sa 7e−5 ba 0.075
Da 0.015 da 0.02

Table 6: Data generating parameters for Model 3 (SDEs describing eukaryotic chemotaxis, with
only the x and y co-ordinates observed).

3 Methodology

3.1 Heuristic identification of practical parameter spaces for ODE es-
timation (Model 1)

The novelty of the approach considered here rely greatly in the process of identifying the ‘right’
practical parameter spaces from which initial parameter values can be chosen when utilising the
classical methods of parameter estimation.

Let the mathematical model of the cardiac excitation described in Section 1.1 be written in
the general form as

dXt

dt
= f(Xt, t,Θ), (12)

where t denotes time, Xt = [E, h, n]Tt denotes the vector state variables with initial state value
X0 = [10,−1, 0]T , Θ the rate parameter and f(·) describing the nonlinear relationship between
Xt and θ. Estimation of the unknown model parameters, Θ can only be possible if there is
a minimum number of measured data available, Y n = [Y1, Y2, Y3]

T
n at a discrete time, tn(n =

1, 2, . . . , N). In the study, these measurements, Y n are the sum of the observable Xn(Θ) and a
measurement error, en. Thus,

Y n = Xn(Θ) + en, (13)

We first perform what we have term as system exploratory analysis (SEA), a type of analysis
where we explore the model (12) with respect to the given measured data (13). In dynamical
systems modelling, no attention is usually given to this type of analysis as compared with
statistical modelling. It is the process of identifying ranges of the parameter spaces where the
trajectories of the model (12) starts to deviate from totally from the dynamics present in the
time series plots of the measured data (13). The impetus for this method is that it helps to
restrict the ranges of the parameters and as such, reduces the issues of parameters values being
trapped at a local optima during optimisation. The SEA algorithm is given below.

Note that, the input parameter ranges are chosen with respect to the reference parameter
values given. We select values below and above the reference value which changes by a factor
relative to the reference value. The simulated trajectories for all the possible parameter com-
binations are then compared with the time series plots of the measured dataset to identify the
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Algorithm 1 System Exploratory Analysis (SEA).

1: Inputs:

Model:
dXt

dt
= f(Xt, t,Θ)

Time span: [0, 300]
Initial state value: X0 = [10,−1, 0]T

Parameter ranges: Θ =

 k1 range
...

g22 range


2: for k1 in k1 range do
3: for k2 in k2 range do

4:
...

5: for g22 in g22 range do
6: try
7: Solve Model
8: Catch
9: Error

10: end
11: end for

12:
...

13: end for
14: end for

15: Return:
Simulated Trajectories: E, h, n

‘right’ practical parameter space for which dynamics present in the given timeseries data are not
lost.

Secondly, statistical inference is carried out via a theoretically well established method called
maximum likelihood estimation [14]. Based on the assumption that the measurements errors,
en in equation (13) are independent across all observations and at all discrete time points and
that the measurement errors are independent and identically normally distributed with mean
zero and known covariance Σn where,

Σn = diag(s21, s
2
2, s

2
3), (14)

with s1, s2 and s3 respectively denoting the estimated standard deviations of the measured
E (Y1), h (Y2) and n (Y3), least squares estimation which is an important special case of the
maximum likelihood principles emerges [33]. Thus, maximising the likelihood function is equiv-
alent to minimising the objective function

C(Θ|Y ) =

N∑
n=1

||W n(Y n −Xn(Θ))||2. (15)
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It is worth noting that in practical terms, objective function (15) are often flat, with many
local extrema or non-smooth, which can cause the function itself, or its derivatives, to be discon-
tinuous at some points in the parameter space. Thus, to ensure we have attain global minima
during numerical optimisation, we generate initial starting parameter values from the ‘right’
practical parameter space using the latin hypercube sampling scheme since it ensures that the
entire range of each parameter is explored [27] and then minimisation is carried out as follows
to obtain Θ̂:

� Fminsearchbnd optimiser [22] is executed for 150 iterations for different initial guesses
and then the initial guess with the minimum functional value is further executed using
Fminsearchbnd optimiser [22] till convergence is achieved.

� A second MATLAB package called Isqnonlin which is gradient-based algorithm is then use
to evaluate the gradient at the estimated parameter values found by the Fminsearchbnd
Optimiser [22].

Finally, the covariance matrix of the parameter estimators Cov(Θ̂ is the basis for assessing
uncertainty of model parameter estimators and it is computed via the linear approximation
technique. Thus,

Cov(Θ̂) =
C(Θ|Y )

(3 ∗N − 12)
(F̂

T
WF̂ )−1, (16)

where F̂ = ∂X(Θ)
∂Θ |Θ=Θ̂. The standard deviation of the parameter estimators, s(Θ̂) is given by

s(Θ̂) =

√
diag(Cov(Θ̂)), (17)

3.2 Parameter transforms, global optimisation and MCMC (Model 1)

3.2.1 Likelihood and posterior

From the way the problem was set, we know that

Y = M(t;θ) + ϵ, (18)

where Y is data, M is the model, θ is the parameters, and ϵ noise. We also know that

ϵi ∼ N (0, σ2
i ) (19)

with some constant noise level σi for each output. Using this, we can define our likelihood
function to be

p(Y|θ,σ) =
∏

i output

1√
2πσ2

i

exp

(
−
∑
t

(Mi(t;θ)− Yi|t)2

2σ2
i

)
. (20)

Finally we define a Bayesian posterior distribution as

p(θ,σ|Y) =
p(θ,σ)p(Y|θ,σ)

p(Y)
(21)

∝ p(θ)p(Y|θ,σ), (22)
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where p(θ) is our prior. Since we did not have certain prior knowledge for the parameters, we
defined our prior as

p(θ) ∼ U(θmin,θmax), (23)

where θmin and θmax indicate minimum and maximum values of θ and act as boundaries on
the parameter space. The choice of boundaries is important for the performance of optimisers
and samplers, and is discussed in the following section.

3.2.2 Parameter transformations

Optimiser and sampler performance can be improved by applying parameter transformations
that create a more convex search space. To find suitable transforms, we plotted 1D cuts or slices
through the high-dimensional likelihood surface for the individual parameters. For each θi in θ,
we looked at h(θi) defined as

h(θi) := p(Y|θi,θnot i = θdefault). (24)

Based on these 1D likelihood slices and the electrophysiological meaning of the parameters, we
divided the parameters into two groups, placing conductance values and rate constants in the
first θ1 = (k1, k2, k3, Fh, fn, GNa, g21, g22)

T , and reversal potential values in the second group
θ2 = (E1, ENa, E†, E∗)

T .
To preserve both model dynamics and the physiological interpretation of the parameters, the

sign of θ1 must remain unchanged. Furthermore, as all θ1 appear as multiplication terms in the
model, we concluded a transformation g(θi) = ln(θi) was most suitable for these parameters,
and chose their boundaries θmin,θmax to be [0.1, 10]× θdefault.

In the model equations, the parameters in θ2 all appear as subtractions from E. From
this we concluded that θ2 should be varied linearly by the optimisers and samplers, hence no
transformation need be applied. As boundaries [Emin, Emax] we chose −150mV to 100mV,
which corresponds roughly to the minimum and maximum values of E seen in experiments.

The resulting 1D likelihood slices using our boundaries and transformations are shown for
all parameters in Figure 5.

3.2.3 Noise estimate

We explored two options for finding the value of σ: First, it can be included in the list of
parameters and inferred at the same time. However, as it was given that the signal-to-noise
ratio (SNR) is 10, by definition we can write

SNR =
σ2
signal

σ2
=⇒ σ2 =

σ2
signal

SNR
, (25)

and hence
p(θ,σ|Y) → p(θ|Y,σ). (26)

We chose to use this value in the remainder of this work, thereby reducing the number of
parameters to be inferred by 1, at the possible expense of a slight loss of precision.
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Figure 5: Cuts through the transformed likelihood surface along each parameter axis, keeping
the remaining parameters at their default values. Each parameter is varied from the minimum to
the maximum value we decided to explore. Note the values on the x-axis are for the transformed
parameters.

3.2.4 Global optimisation and MCMC

We used a two-tier strategy, in which a global optimisation algorithm was used to find a candidate
solution anywhere within the wide boundaries, and then a sampling algorithm was used to explore
the posterior distribution around this point and to quantify the uncertainty in our parameter
estimates.

For global optimisation we used the Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) [20] algorithm. As starting points for the optimisation we used either a uniformly sampled
value from anywhere within the boundaries, or a value sampled from a distribution centered on
θdefault. For each case, we ran optimisations from 10 sampled starting points. Roughly half of
the randomly picked initial guesses converged to a similar final log-likelihood value, while the
other are several order of magnitude off which clearly indicates it stuck at some non-optimal
parameter space. For initial guess starting from the default parameter values, all 10 runs, with
different random seeds, converges to the same final log-likelihood value running from randomly
picked initial guesses.

For the sampling stage, we used an adaptive covariance Markov Chain Monte-Carlo (MCMC)
method, initialised at the best found found in the optimisation stage. The resulting Markov chain
was then used to obtain a Maximum A-Posteriori probability (MAP) estimate.

All optimisation and MCMC were run using Pints, an open source Python package [10]. To
run simulations in Python, we first re-implemented the model in Myokit [9] and verified our re-
sults matched the output of the competition Matlab code. Details of our method implementation
and code is available in https://github.com/CardiacModelling/cside-2018.
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We tested our approach by running repeated trials on simulated data sets intended to mimic
the competition data, but for which the true parameters were known. In these tests, we found
we could reliably recover the input parameter sets.

3.2.5 Precision matrix estimation

Although our methods return MCMC chains which represent our posterior estimation, the com-
petition required a precision matrix as our final submitted result. We computed the precision
matrix by inverting a covariance matrix calculated from the (detransformed) MCMC chain sam-
ples.

3.3 Bayesian Inference with emcee (Model 1)

We choose to use a Bayesian approach when inferring the parameters of Model 1, using a Markov
Chain Monte Carlo (MCMC) method to draw samples from the posterior. In this section we
will describe the model choices we made for prior and likelihood, the tools we used to produce
these samples, and how we used them to generate our competition estimates.

3.3.1 Parameterisation and Priors

Most optimisation and sampling routines work best when we can remove constraints by choosing
an appropriate parameterisation. From our reading of the original paper describing Model 1, we
were able to determine three classes of original parameters:

1. Unconstrained parameters, which were sampled directly.

2. Constrained positive/negative parameters, such as k1. We parameterised these by using a
log-scale, i.e. sampling log k1.

3. Ordered parameters E1 < E† < E⋆. We parameterised these by taking logs of the differ-
ences between them, i.e. sampling E1, log(E† − E1), log(E⋆ − E†).

Given these parameterisations, we then selected normal or log-normal priors p(θi) for each
reparameterised variable as appropriate. As extreme values of parameters would cause the solver
to crash or produce degenerate solutions, we reasoned that the competition parameters would
not deviate too far from the example parameters provided. We selected parameters for the priors
that ensured that values roughly around the order of magnitude of the example parameters would
be considered plausible. Table 7 summarises our parameterisation and prior choices.

3.3.2 Likelihood

We choose to evaluate the likelihood directly, by running the provided solver for a given set of
parameters. As we know the data was generated by adding independent Gaussian noise to the
solver output, it makes sense to choose a Gaussian log-likelihood,

log p(D | θ, σ) =
3∑

j=1

T∑
t=1

logN (y
(t)
j ; fj(θ)

(t), σj), (27)
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Parameters Prior

k1, k2, k3 logN (−2, 1)
E1 N (0, 100)
E† − E1 logN (2, 1)
E⋆ − E† logN (3, 1)
ENa N (0, 100)
Fh logN (0, 1)
Fn logN (−2, 1)
GNa logN (3, 30)
−g21,−g22 logN (1, 1)

Table 7: Parameterisation and priors used for Method 3

where σj are additional parameters we can infer along with θ. If a particular sample of the
parameters caused the solver to crash or otherwise take too long to produce a solution, we
returned a log-likelihood of negative-infinity, guaranteeing that the sample will be rejected.

3.3.3 Sampling

We generated samples from the posterior using emcee[16], a Python implementation of the affine-
invariant ensemble sampler[19], which only requires a function to evaluate the log-posterior up
to a constant. The sampler runs a large number of chains in parallel, referred to as walkers, and
proposes new positions for a walker by considering the current positions of all other walkers.
This allows the sampler to account for the approximate shape of the posterior when generating
proposals, allowing it to work well even in the presence of strong correlations. Beyond selecting
the number of walkers, the sampler does not in general require the user to specify tuning settings.

The sampler requires careful selection of the starting point of the walkers in order to ensure
convergence to the posterior within a reasonable number of samples. The emcee authors sug-
gest using a tight cluster of points around the Maximum A Posteriori (MAP) estimate of the
parameters, θMAP. We used the implementation of Powell’s method[34] available in the SciPy
optimisation package[23] to find θMAP, as it does not require derivatives of the log-posterior to
be taken, and is reasonable robust to invalid parameter settings that result in negative-infinity
log-posterior values.

We ran the sampler on our log-posterior function with 100 walkers for 10,000 steps each,
producing 1,000,000 samples in total. Each walker was initialised at the MAP solution, with
a small amount of independent zero-mean Gaussian noise added. We opted for a conservative
approach when considering burn-in, discarding the first half of each chain to leave 500,000
samples. This process was repeated 4 times in total to assess convergence.

3.3.4 Evaluation

The first step when assessing most Bayesian analyses is to check that the samples drawn from
the posterior have actually converged. We used the potential scale reduction factor R̂ statistic,
which measures how well multiple parallel MCMC chains agree[17]. If the R̂ value for each
parameter is less than 1.1, the chains are usually considered adequately converged. Note that R̂
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cannot be computed directly on the parallel walkers used by emcee, as it requires the chains to
be independent.

Having checked that our MCMC chains have converged, we then check that our procedure
can adequately recover known parameters from the solver output. We initially used the exam-
ple parameters provided with the solver, before using random perturbations of those example
parameters as well. Finally, we used our samples to compute the expected ODE output E[f(θ)],
and plotted the scaled residuals between this and the data to check that the data was actually
normally distributed around the output and not skewed at any particular point in the timeseries.

3.4 Nearly exact Bayesian Inference (Model 2)

For model 2, a simple approach can compute the results of ideal Bayesian inference to within a
small numerical tolerance.

We assumed we know the observation noise process, which was given in the competition
description. Then model 2 only had a single unknown parameter, the stiffness k3. The likelihood
function of k3 given observations Y is a 1D function that we can evaluate at any point. We
simply plotted this likelihood for a grid of k3 values. As the function was well-behaved, we could
then select a region of high likelihood and replot the likelihood function on a fine grid.

By placing a uniform prior over the grid of k3 values considered, we can compute the posterior
distribution P (k3 |Y) over this grid of values. In the limit of a fine grid, expectations under this
distribution will tend to those of the ‘true’ posterior distribution given by a continuous uniform
prior over the range considered. To use another prior, we’d simply evaluate the prior on the grid
and normalize it.

The mean and standard deviation of the posterior give an estimate of the unknown parameter
k3. If the simulator output for known stiffness k3 is Ŷ(k3), the time series underlying the data can
be estimated as a combination of these simulations, weighted by how plausible the parameters

are:
∑

i Ŷ(k3)P (k
(i)
3 |Y).

3.5 Emulation with nonlinear optimisation, MCMC and bootstrap-
ping (Model 2)

We start the analysis by specifying the statistical model:

qt = fq(xt;θ) + ϵ1t,

pt = fp(xt;θ) + ϵ2t,
(28)

where qt ∈ q are the noisy measured flows, pt ∈ p are the noisy measured pressures from
the first 3 vessels, f(.) describes the system behaviour that comes from numerically solving the
fluids model equations (3) - (6), i.e. fq(.) is the output (simulated) flow and fp(.) is the output
(simulated) pressure, θ is the parameter that we wish to infer from the observed flow and pressure
(i.e. stiffness in (4)), xt ∈ x denote other input variables (e.g. inflow into the Main Pulmonary
Artery) and ϵ are the errors, which we know are i.i.d following a Gaussian distribution and are
different among the flow and pressure profiles.

We choose the residual sum of squares (RSS) as the objective function to be minimised;
under the Gaussian assumption of the errors, it is proportional to the negative log likelihood of
a Normal distribution. In this study, RSS is calculated for the 6 profiles: 3 flows and 3 pressures
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and we aim to find the stiffness parameter value that minimises the RSS scaled by each signal
variance in (29).

RSS =

3∑
j=1

(
(pj − fp

j (x;θ))
2

σ2
pj

+
(qj − fq

j (x;θ))
2

σ2
qj

)
(29)

To find each signal’s noise variance, we use the fact that we know the signal-to-noise ratio (SNR):

SNR =
σ2
signal

σ2
noise

. (30)

Prior to the data becoming available, we proceed by running a large number of forward simu-
lations of the PDE model for a fine grid of parameter values within the biologically meaningful
range provided by the organiser. This provides an emulator for the flow and pressure profiles,
which can be used to extract the parameter value which minimises the RSS value (ordinary
least squares) between the simulated data provided by the organiser and the ’optimum’ data.
Additionally, the emulator allowed quickly inspecting the landscape of the objective function,
which was unimodal. We then insert the variance of this optimum data in (30) to find the noise
variance of each signal, and subsequently obtain the reweighted RSS in (29). At the next step we
updated our parameter estimate by applying nonlinear constraint optimisation to the rescaled
RSS (reweighted least squares) with the gradient-based SQP algorithm [7], part of the fmincon
function in Matlab. For this purpose and to ensure high accuracy, we used the simulator (i.e.
solved the PDEs).

Having obtained the point estimate for the parameter in the model, we wish to quantify
uncertainty in our knowledge of the parameter. This can proceed under either of the frequentist
and Bayesian frameworks. Adopting a bayesian stance, we consider the parameter as a random
variable, adopting a prior distribution which represents our level of knowledge before observing
the data. In this case, a uniform prior was used, constraining the inference to a particular
range without favouring any particular parameter values within this range. Uncertainty can be
quantified using an MCMC sampler, where the noise variance is fixed at its estimated value
(see eq. 28) Consideration from the frequentist viewpoint necessitates a different quantification
technique as the randomness shifts from the parameters to the data; this time, we assume that
there exists one true fixed parameter value that we hope to recover, with uncertainty resulting
from different instantiations of the data. This randomness can be exploited in a bootstrapping
framework, where we repeatedly conceptualise new data sets, introducing parameter uncertainty
as a result of the uncertainty in the data. In cases where noise variance is unknown, one can
adopt a nonparameteric bootstrapping approach, resampling from the current dataset to produce
our conceptualised dataset and reoptimise the parameters. For the challenge considered here,
the SNR was given beforehand and so having optimized the parameter, we could estimate the
noise variance and generate new data by sampling new noise instantiaions from a Gaussian
distribution. This process was repeated and the parameter reoptimized 100 times to provide an
estimate of the uncertainty.
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3.6 The Scaled Expected Improvement Method (Model 2)

Let Y = M(x) denote the computational model of the pulmonary circulation described in Section
1.2. The input, x, corresponds to the parameter Eh/r0 in (4), while the output is the T × 6
matrix

Y = [p1, p2, p3, q1, q2, q3]

comprising pressure (pi, i = 1, 2, 3) and flow (qi, i = 1, 2, 3) curves for timepoints t = (t1, . . . , tT )
at the midpoints of the first three vessels.

Inference of the model parameter x is performed by minimization of the following objective
function:

f(x) =

T∑
i=1

6∑
j=1

(yij − yobsij )2

σ̂2
j

, (31)

where Y obs = [yobsij ] is the observed data matrix provided by the conference organizers and
Y = [yij ] = M(x) is the simulation at x.

In (31), σ̂j is an estimate of the noise standard deviation and is obtained from the definition
of the signal-to-noise ratio (SNR):

SNR =
σ2
signal

σ2
=⇒ σ2 =

σ2
signal

SNR
. (32)

Let Y obs
j denote the jth column of the data matrix Y obs. Each signal standard deviation σsignal

(j = 1, . . . , 6) is estimated by fitting a Gaussian process (GP) to the data (t, Y obs
j ), with a

constant mean function and a Matérn 5/2 kernel:

k(xi, xj) = σ2
signal

(
1 +

√
5r

l
+

5r2

3l2

)
exp

(
−
√
5r

l

)
, r = ∥xi − xj∥, (33)

see [36] for more details. The value σsignal is taken to be the corresponding estimated GP kernel
hyperparameter, while the signal-to-noise ratio was given by the conference organizers to be
equal 10.

Minimization of the objective function f(x) is performed via Bayesian optimization (BO) us-
ing the Scaled Expected Improvement acquisition function [31]. Bayesian optimization is a global
optimization algorithm that can tackle problems where the objective function is expensive-to-
evaluate, possibly returning noisy values, and where gradient information might not be available.
Optimization algorithms design a sequence of points {xn} that aims to find the global minimizer
xglobal. BO casts the optimization problem into a decision-theoretic framework, where the data
are the function evaluations {xi, f(xi)}, the quantity to estimate is the minimizer xglobal and the
action or decision to take is the next query point xn+1. The algorithm involves two steps: (i)
iteratively maintaining a GP model of the objective function f , which is updated as new infor-
mation on the function arrives, and (ii) evaluating f at the point which maximizes an acquisition
function a(x) derived from the GP in (i). In order to obtain a first set of data, the function is
evaluated at ninit = 10 × d points sampled from a Latin hypercube design in the input space,
with d denoting the dimensionality of the input space (in this case 1).
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Let f ∼ GP (m, k) denote the GP prior on the objective function f , with m(x) = c and
k(xi, xj) being the ARD Squared Exponential kernel:

k(xi, xj) = σ2
signal exp

(
−1

2

d∑
k=1

(xik − xjk)
2

l2k

)
. (34)

The acronym ARD stands for automatic relevance determination, which means allowing for a
different lengthscale lk per input dimension. If the lengthscale along one dimension is large,
the GP is flat along that direction, effectively meaning that the corresponding input variable is
not relevant. The GP model hyperparameters, θ = (l1, . . . , ld, σsignal, σ), are estimated at every
iteration of the BO algorithm by maximizing the log marginal likelihood, see Section 5.4.1 in
[36]. After n function evaluations Dn = {(x1, f1), . . . , (xn, fn)}, with fi = f(xi), the posterior
GP is denoted:

f(·) | Dn ∼ GP (f̂(·), s(·, ·)) (35)

f̂(x) = m(x) + k(x)′(K + σ2I)−1(y −m(X)) (36)

s(xi, xj) = k(xi, xj)− k(xi)
′(K + σ2I)−1k(xj), (37)

where m(X) = (m(x1), . . . ,m(xn))
′ is the prior mean at the training inputs,

k(x) = (k(x1, x), . . . , k(xn, x))
′ is the n × 1 vector of covariances between the ouput at the

training inputs and the test input, and K = [k(xi, xj)] for i, j = 1, . . . , n. The predictive
variance is obtained as s2(x) = s(x, x) = Cov[f(x), f(x)].

The incumbent minimum is denoted fmin = min(f1, . . . , fn). From the marginalization prop-

erty of GPs, at a given index x the random variable f(x) ∼ N(f̂(x), s2(x)). Define the Improve-
ment random variable as:

I(x) =

{
fmin − f(x) f(x) < fmin

0 otherwise.
(38)

Let u = (fmin − f̂(x))/s(x) and Φ(·), ϕ(·) denote the cumulative distribution function and
probability density function of a N(0, 1) random variable respectively. The expectation of I(x)
is known as the Expected Improvement (EI) acquisition function [28]:

EI(x) = E[I(x)] (39)

= s(x) {uΦ(u) + ϕ(u)} , (40)

while the variance (see (5) in [31]) is equal to:

V I(x) = Var[I(x)] (41)

= s2(x)
{
(u2 + 1)Φ(u) + uϕ(u)

}
− {EI(x)}2. (42)

The Scaled Expected Improvement acquisition function (see (6) in [31]) is defined as:

ScaledEI(x) = EI(x)/
√

V I(x). (43)

Selecting the next query point to be the maximizer of the ScaledEI acquisition function means
evaluating the function at a point where we expect a high improvement and we are confident
about the value of the improvement being high. This function corresponds to the average im-
provement per unit of variance and is, as desirable, a dimensionless quantity. The BO algorithm
with the ScaledEI acquisition function is summarised in Algorithm 2.
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Algorithm 2 Scaled Expected Improvement Bayesian optimization.

1: Inputs:
Initial design: Dninit

= {(xi, fi)}ninit
i=1

Budget of nmax function evaluations

2: for n = ninit to nmax − 1 do
3: Update the GP: f(x) | Dn ∼ GP (f̂(x), s(x, x′))
4: Compute the ScaledEI acquisition function: ScaledEIn(x)
5: Solve the auxiliary optimization problem:

xnext = argmax
x∈X

ScaledEIn(x)

6: Query f at xnext to obtain fnext
7: Augment data: Dn+1 = Dn ∪ {xnext, fnext}
8: end for

9: Return:
Estimated minimum: fmin = min(f1, . . . , fnmax)
Estimated point of minimum: xmin = argmin(f1, . . . , fnmax

)

3.7 Gaussian process regression (Model 3)

We propose to infer the parameters of Model 3 using a Gaussian process (GP) regression, sepa-
rately estimated for each parameter. This approach is useful on its own merit but importantly
it can be combined with approximate Bayesian computation (ABC) schemes to allow for extra
flexibility as discussed in Section 3.8. Below we present the key ideas of the basic regression
method and refer to [18] for the details of both approaches.

3.7.1 Gaussian process regression

A GP regression is a nonparametric Bayesian model explaining the observed output data yi in
terms of values of unobserved (latent) function f evaluated at given input points xi, i.e.

yi = f(xi) + εi, εi
iid∼ N (0, 1), i = 1, . . . , N,

whereN is the sample size. The prior assumption on the function f is f(x) ∼ GP(m(x), k(x,x′)),
i.e. that it follows a Gaussian process2 with the mean function m(x) and the covariance function
k(x,x′) (kernel). We refer to [36] for an extensive treatment of GPs. In our application we are
interested in explaining each of the 10 parameters of the SDE system (7)–(11) using features
extracted from the high-dimensional output from the model simulator. To this end before the
competition data became available, we had trained (or estimated) 10 regressions on synthetic
data obtained using the SDE system simulator.

2A GP is a stochastic process such that the joint distribution of any finite set of random variables from this
process is multivariate Gaussian.
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3.7.2 Experiment design

The initial design was based on 1000 points (θ vectors) generated from a Sobol’ sequence for
training and on 100 points from a Latin hypercube for testing (sensitivity analysis with respect
to the kernel specification). For each θ from the initial set we obtained simulator outputs. A
substantial difficulty in setting up the experiment design was posed by no prior knowledge on
the plausible parameter values except the default values of the simulator θ̃ specified by [43].
Therefore we needed to adopt a working assumption on the parameter domain, which we set to
[0.5θ̃ , 2θ̃ ]. The carried out extensive exploratory analysis revealed that the chosen range was
sufficient to obtain a broad variety of cell behaviour patterns and at the same time did not cause
stability problems to the simulator, see [18].

3.7.3 Features

A substantial challenge in running a GP regression was related to the choice of appropriate
explanatory variables x. As discussed in Section 1.3, the simulator generates 5 types of output,
each being high-dimensional and complex. Figure 6 illustrates the raw signals as well as some
measures derived from them, e.g. the ratio of cell’s area to its perimeter (varying over time) or
mean (over contour) of LA (varying over time). It can be seen that the simulator outputs cannot
directly serve as regressors, so it is necessary to base the inference on a set of features extracted
from the generated data.

However, in this case constructing appropriate measures is challenging due to three main
issues. First, the system (7)–(11) is stochastic and so is the simulator output. Therefore it is
necessary to find features being similar for the datasets generated using the same (or similar)
values of θ, yet allowing for distinguishing between outputs corresponding to very different θs.
Second, the space dimension of the output is not fixed but may vary within a single simulation
(for a given θ) and across different simulations (for different θs). This is due to the way the finite
element nodes are specified in the simulator, which are added or removed from the list depending
on the current shape of the cell’s membrane. Third, the finite element nodes are independently
drawn at each time point in the simulation. This means that there is no alignment between
points in subsequent time points, which prohibits any time series analysis of local signals at a
given space location.

After an extensive exploratory analysis of the outputs an their properties, we extracted a
large number of features which we used as inputs to the GP regressions (56 and 31 covariates for
Model 3 and Additional Challenge, respectively). See [18] for a thorough discussion of feature
construction. An important role therein was played by features based on Fourier transform
of various signals. Here signals mean either values of a certain output at a given time point
(so representing values in space) or time series of descriptive statistics (over space) of a certain
output at each time point. Fourier transform allows for scale, translation and rotation invariance,
by which it captures the properties of the shape of a given signal. The shape of a signal is of
interest for both cell contours and chemical signals. In the former case we need to filter out
random movements of a cell, in the latter case to account for the lack of time alignment of finite
element points at which signals are measured. Since the dimension of Fourier components was
still prohibitive to directly use in the GP regression, we applied principal component analysis
(PCA) for dimensionality reduction and used the scores corresponding to the first two principal
components as regressors.
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3.7.4 Model specification

Typically, the performance of a GP regression crucially depends on the chosen kernel. Hence, we
tried 5 different kernel types – squared exponential, Matérn 3/2, Matérn 5/2, rational quadratic
and neural network – allowing for automatic relevance determination (ARD), i.e. a different
length scale for each input. ARD results in downweighting of less informative features, which in
this case are likely to be different for each regression. Due to the time constraints in the compe-
tition timeline we estimated the kernel hyperparmeters using maximum likelihood as provided
by fitrgp function from MATLAB® Statistics and Machine Learning Toolbox�. We note, how-
ever, that Bayesian estimation would be preferable as it allows for capturing (hyper)parameter
uncertainity. The final kernel configuration was based on the out-of-sample performance of the
fitted kernels on the test dataset as measured by mean relative squared errors. The final kernel
configuration was then retrained on a larger sample based on 2000 points from a Sobol’ sequence,
initialised from the hyperparameter estimates obtained in the first fitting. We refer to [18] for
more details on the sensitivity analysis and kernel specification.

3.8 Approximate Bayesian computation (Model 3 additional challenge)

The system described in equations 7 – 11 is stochastic and the likelihood is intractable, hence,
classical inference methods can not be applied in this scenario. A different class of methods, called
likelihood-free methods, can be applied to such scenarios. This section details an application
of the Sequential Monte Carlo approximate Bayesian computation (SMC ABC) algorithm [3] to
the SDE system describing cell chemotaxis in response to pseudopod formation. The steps in
the algorithm are summarised in Algorithm 3.

In general, in an ABC algorithm, the likelihood calculation is replaced by steps which involve
simulating artificial data from the model given different parameter values and comparing this
data with the observed data. For high dimensional data, the comparison is typically made in
terms of summary statistics, which are extracted from the artificial and the observed data set.
The summary statistics are then compared, and if they are similar enough, the parameters used
to generate the artificial data set are considered to be a sample from an approximate posterior
distribution. While the ABC idea is simple and provides a tool to deal with parameter inference,
one of the most important and problematic issues with these algorithms is finding suitable
summary statistics that are approximately sufficient and low dimensional. Given the specific
nature of each problem, it is impossible to specify a set of summary statistics that will work in
every situation. Fearnhead and Prangle’s [12] solution to this problem consists of constructing
linear regression models with the parameters as response variables and transformations of the
data (summary statistics) as predictors:

θi = E(θi|y) + εi, where εi is zero mean noise (44)

Within the ABC algorithm, the regression models are used to generate predictions of each
parameters using a set of summary statistics extracted from each synthetic data set. These
predictions are then compared to the predictions obtained from the real data set, and if they are
close, the sample is accepted as part of the approximate posterior distribution. We improve on
Fearnhead and Prangle’s [12] idea by replacing the linear regression model in Equation 44 with
a more flexible GP regression model, described in more detail in Section 3.7.
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Algorithm 3 Sequential Monte Carlo approximate Bayesian computation (SMC ABC) [3] .

1: At iteration t = 1
2: for i = 1, . . . , N do

3: Simulate θi ∼ π(θi) and x ∼ f(x|θ(1)
i ) until ρ(S(x), S(y)) < ϵ1

4: Set w
(1)
i = 1

N
5: end for
6: Take τ22 as twice the empirical variance of the θ

(1)
i ’s

7: At iteration 2 ≤ t ≤ T
8: for i = 1, . . . , N do

9: pick θ∗
i from θ

(t−1)
j ’s with probabilities w

(t−1)
j

10: generate θ
(t)
i |θ∗

i ;∼ N (θ∗
i ; τ

2
t ) and x ∼ f(x|θ(t)

i ), until ρ(S(x), S(y)) < ϵt

11: Set w
(t)
i ∝ π(θ

(t)
i )∑N

j=1 w
(t−1)
j N (θ

(t)
i |θ(t−1)

j ;τ2
t )

12: end for
13: Take τ2t+1 as twice the weighted empirical variance of the θ

(t)
i ’s

π is a prior distribution, f is the simulator, ρ is a distance metric, S represents the summary
statistics and w are particle weights.

The algorithm described in Algorithm 3 is a sequential method which works by generating
populations of N points at each iteration of the algorithm, t. These populations are used
to produce better sampling proposals in later iterations. Lastly, the sequence of decreasing
tolerance levels, ϵ1, . . . , ϵt, ensures the populations get progressively more focused in areas with
high posterior probability.

4 Results

This section will outline the different criteria used to rank the performance of participating
methods, as well as the results of the leading participants. Different types of criteria will give
different information as to a method’s performance and it may be of interest to focus on particular
type of criteria in future events in order to gain insight into a specific question of interest (such
as convergence capabilities or classification of outcomes). The type of criteria used to assess the
methods for this event was estimation accuracy of the data generating parameters. Accuracy was
assessed in both the parameter and data domain. There were three criteria used to assess the
results and participants received a rank for each based on their method’s performance relative
to the rest of the participants (for their chosen model i.e. methods were not compared between
models). A competitor’s overall score was the average rank across criteria. This information, as
well as the assessment criteria themselves, were made available to participants at the beginning
of the challenge.

Each participant has included further information about the implementation of their methods
and their obtained results, which can be found in Sections 5.1-5.8 in the Appendix (omitted here
for brevity).
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4.1 Assessment criteria

The criteria were chosen in order to assess both how close point estimates were to the true param-
eters, as well as how much certainty a participant had in their estimate i.e. how peaked/dispersed
the uncertainty intervals of the parameters were. The criteria were also chosen in order to not
inherently favour a Bayesian/Frequentist approach to parameter inference.

Criterion 1. Parameter Domain, Weighted Root Mean Square (RMS):
Participants submitted a point estimate for each parameter in their chosen model and from

these, the data generating parameters were subtracted. The differences were then weighted by the
data generating parameters, in order to avoid different parameter magnitudes from dominating
the calculation, and the RMS was then calculated.

Weighted RMS =

√√√√ p∑
i=1

(
θ̂i − θi

θi

)2

Here, p is the number of parameters in a chosen model, θ̂i is the i
th parameter point estimate

from the participant and θi is the i
th parameter that generated the data. Methods that produced

smaller weighted RMS values were ranked higher.

Criterion 2. Data Domain, Root Mean Square (RMS):
Participants used the point estimate(s) from their chosen model to solve the system of equa-

tions. From the resulting predicted signal the signal produced using the data generating param-
eters was subtracted and the RMS was then calculated.

RMS =

√√√√ N∑
i=1

(
X̂i −Xi

)2
Here, N is the total number of datapoints, X̂i is the ith point of the signal produced using

the participant’s estimate(s) and Xi is the i
th point of the signal produced using the parameters

that generated the data. Methods that produced smaller RMS values were ranked higher. Note
that Model 3 was not assessed using this criterion, since Model 3 is an SDE (see Section 1.3 for
details) and solving the equations using the same parameter values can produce different signals
due to the stochasticity present in the system.
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Criterion 3. Parameter Domain, Likelihood:
This criterion was included in order to assess a participant’s uncertainty quantification in

their parameters. Participants submitted a point estimate for each parameter in their chosen
model and either a standard deviation/standard error corresponding to each parameter or a
precision matrix corresponding to all parameters. The likelihood (assuming a Gaussian dis-
tribution) of the data generating parameter(s) given the participant’s estimates and standard
deviation(s)/standard error(s)/precision matrix was then calculated.

Likelihood =

p∏
i=1

N (θi|θ̂i, σ)

or

Likelihood = N (θ|θ̂ ,Σ−1)

Here, p is the number of parameters in the chosen model, N (. . . ) denotes the Gaussian

distribution, θi is the ith parameter that generated the data, θ̂i is the ith parameter point
estimate of the participant, σ is the ith standard deviation/standard error corresponding to the

ith parameter estimate, θ is the vector of parameters that generated the data, θ̂ is the vector
of parameter point estimates of the participant and Σ−1 is the precision matrix corresponding
to all the estimated parameters of the participant’s chosen model. Methods that produce larger
likelihood values are ranked higher.

4.2 Results: Model 1

Participant Method Weighted RMS RMS Log Likelihood

Heuristic identification
of practical parameter spaces
(see Section 3.1 for details) 1.5506 75.2617 -2.8985e+05

Parameter transforms, global
optimisation and MCMC
(see Section 3.2 for details) 1.5480 38.4195 -22.1512

Bayesian Inference with emcee
(see Section 3.3 for details) 0.9172 39.5400 -12.0482

Table 8: Participants’ scores for Model 1 (see Section 1.1 for details). For details of the assessment
criteria, see Section 4.1.
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4.3 Results: Model 2

Participant Method Weighted RMS RMS Likelihood

Nearly exact Bayesian Inference
(see Section 3.4 for details) 0.0065 1.2684 4.9367e-04

Emulation with nonlinear optimisation,
MCMC and bootstrapping
(see Section 3.5 for details) 0.0036 0.6991 6.6067e-04

The Scaled Expected
Improvement Method
(see Section 3.6 for details) 0.0032 0.6185 8.8216e-04

Table 9: Participants’ scores for Model 2 (see Section 1.2 for details). For details of the assessment
criteria, see Section 4.1.
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4.4 Results: Model 3

Participant Method Weighted RMS Log Likelihood

Gaussian process regression
(see Section 3.7 for details) 0.6847 33.9102

Approximate Bayesian computation*
(see Section 3.8 for details) 1.1226 24.9057

Gaussian process regression
(see Section 3.7 for details) 2.2872 31.1522

Approximate Bayesian computation
(see Section 3.8 for details) 2.5021 27.8420

Approximate Bayesian computation*
(see Section 3.8 for details) 1.5448 35.6111

Table 10: Participants’ scores for Model 3 (see Section 1.3 for details). The first row of results
pertains to the fully observed problem and the second row of results pertains to the partially
observed problem i.e. the additional challenge (see Section 2.3 for details). For details of the
assessment criteria, see Section 4.1. Note that results with a * were submitted after the event
deadline and were not assessed as part of the competition. These results, however, took 7 days
(each) to run and therefore are comparable to the other results in the table.
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5 Appendix

5.1 Heuristic identification of practical parameter spaces for ODE es-
timation (Results Model 1)

Figure 7 shows the timeseries plots of E (Y1), h (Y2) and n (Y3). These profiles demonstrate how
each of the three measured state evolves over time.

As an illustration of the SEA, Figures 8 and 9 respectively depicts the case when the value
of the parameter k1 is change below and above the reference value whilst keeping the remaining
parameters at their reference values. As can be seen in these figures, k1 affects all the three
state variables (E, h and n) and with k1 = −0.1, the simulated dynamics of the state variables
deviate from the dynamics present in the data (Figure 7) especially for h and n. Thus, the lower
limit for k1 can be set to be equal to k1 = 0. Likewise for k1 = 0.3 in Figure 9, the simulated
dynamics deviate from the dynamics present in the data (Figure 7). Thus, the upper limit for
k1 can be set to be equal to k1 = 0.3.

Following similar deductions for the remaining parameters, Table 11 contains the lower and
upper limits defined for the numerical optimisation step. With these limits, the initialising
parameter values are chosen using the LHS [27] for the optimisation of the objective function
(15). The estimated model parameter values and their corresponding standard deviations are
reported in Table 11. Figure 10 shows the true dynamics and model fit of E, h and n. These
profiles demonstrate the performance of the estimation approach.

Table 11: Results of system exploratory analysis and nonlinear weighted least squares estimation

Parameter True value lower limit upper limit Estimate Std

k1 0.12 0 0.3 0.122 0.004
k2 0.1 0.01 0.2 0.080 0.003
k3 0.3 0.01 0.5 0.122 0.015
E1 -65 -120 -40 -63.548 0.109
ENa 60 60 70 62.674 0.291
E† -60 -120 -40 -56.592 0.119
E∗ -20 -25 -5 -22.305 0.048
Fh 0.25 0.01 1 0.335 0.015
fn 0.015 0 0.1 0.015 1.642×10−4

GNa 50 0 60 13.592 0.062
g21 -7 -10 0 -7.583 33.849
g22 -5 -15 -3 -3 0.006

5.2 Parameter transforms, global optimisation and MCMC (Results
Model 1)

The inferred parameter distribution we obtained is visualised in Figure 11, which shows the
1D marginal plots of the obtained posterior distribution in the parameter transformed space,
along with the MAP estimates and the values used to generate the competition data. Three
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independent MCMC chains are shown, from runs initialised at different CMA-ES optimisation
results.

Most of the true parameters are within our obtained posterior distribution, which indicates
we successfully captured the uncertainty of the parameters in the competition data. Two pa-
rameters, k3 and Fh, are at the edge of the marginal distribution. The reason for this is that Fh

appears only in dh/dt which is a very fast component in the ODE system, and so only a few of
the observed data points are sensitive to this parameter, giving us relatively little information.
Similarly, the effect of k3 can only be seen for a very short period during which E > E∗, where
E∗ is −30mV.

To investigate correlations between parameters, we created the 2D pairwise marginal plots of
the obtained posterior distribution shown in Figure 12. Only one of the three chains in Figure 11
is shown here. This figure shows that some of the parameters have a strong correlation in the
MCMC chain. However, the true parameter values are all within each of the 2D marginal
distribution.

The posterior model predictions are shown in Figure 13. The predictions (solid blue lines)
are well within the competition data points (grey crosses), and seem to find a nice average. The
predicted lines go very close to the ‘true’ simulation (red line). In some areas the blue predictions
even appear to be a more likely source for the sampled data than the simulation using true values.
We believe this is due to the noise added to the spike in the data which introduces a bias in the
data that gets reflected in the inferred parameters. This is shown in more detail in the right
panels of Figure 13, which zoom in on the initial rapid upstroke of the action potential.

Figure 14 shows the 1D marginal plots of the posterior distribution in the model parameter
space. It shows that the marginal posteriors of some of the untransformed parameters are not
Gaussian, in contrast to the more Gaussian distributions shown in Figure 11.

Finally, Figure 15 shows a 1D cut of the log-likelihood surface along a line connecting the
true model parameter values to the obtained MAP model parameter values. This turns out
to be a non-convex type hyperline, which clearly suggests that the log-likelihood function is
non-Gaussian, confirming the non-Gaussian nature of our posterior. This suggests that our
precision matrix approximation in the model parameters is not a good representation of our
MCMC likelihood estimates.

5.3 Bayesian Inference with emcee (Results Model 1)

Our procedure results in a set of samples from the posterior. Running our procedure 4 times in
parallel took approximately 8 hours in total using a 3.5 GHz Intel Xeon E3-1245 desktop CPU.

A fully Bayesian approach would be to use all of these samples to compute any expectations
needed. However, the format of the competition required us to submit point estimates for the
parameters, along with a covariance matrix for the parameters, and a point estimate for the true
data-generating signal. The ranking criteria used for the competition means that we submitted
the empirical mean of the parameter samples rather than the MAP estimate, as the mean
maximises our expected score over our estimate of the posterior. Similarly, we submitted the
empirical covariance matrix computed directly from the parameter samples. As the eigenvalues
of this matrix spanned several orders of magnitude, we added a small value to the diagonal of
the matrix to improve numerical stability. For a real application, it would be better to rescale
the parameters to avoid this problem. For the signal estimate, we submitted the mean over each
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output associated with each parameter sample, rather than running the solver once with the
mean parameter estimate, which again maximises our expected score.

Our method was ranked first in the competition, which validates our approach. The use of
tuning-free algorithms for both our MAP optimisation and our sampling process freed us to focus
on modelling choices, whilst an appropriate parameterisation based on model knowledge allowed
these algorithms to work effectively. A robust checking procedure as described in Section 3.3.4
allowed us to catch mistakes we made when specifying the model and ensured we were confident
in our submitted parameter estimates.

5.4 Nearly exact Bayesian Inference (Results Model 2)

Based on a preliminary plot of the log-likelihood, we evaluated the posterior for a uniform prior
on k3 ∈ {72000, 72010, 72020, . . . , 77000}. The posterior is close to a normal distribution with
mean 74510.9 and standard deviation 512.6, and these values were reported as estimates.

Along with this submission, we noted informally that the ‘nice’ number k3=75000 is perfectly
plausible under this posterior, and guessed that this was in fact the right answer (which it was).
Using a prior that strongly favors numbers that someone is likely to pick by hand would have
given a winning entry, but we felt such an entry wasn’t in the spirit of the competition.

Slight changes to the model (the prior or likelihood) result in slightly different posteriors.
For example, estimating the noise levels rather than using the known levels, gives a posterior
shifted slightly (≈ 200) to the right. Such an entry, although using a less informative model,
would have ranked more highly in the competition on this particular occasion. However, the
range of stiffnesses k3 that we should consider plausible is similar under these different models.

5.5 Emulation with nonlinear optimisation, MCMC and bootstrap-
ping (Results Model 2)

The parameter value which minimised the RSS was 74726 – see Figure 16; when the signals were
reweighted by the corresponding noise variance, i.e. we optimised the negative log likelihood, we
obtained an estimate of 74729.
Profile plots for the first vessel were generated with this estimate and can be seen in Figure
17. As one would expect, uncertainty quantification using the Bayesian and frequentist methods
gave very similar results. Using bootstrapping, our standard deviation estimate was found to be
533 and using MCMC, 531.

5.6 The Scaled Expected Improvement Method (Results Model 2)

Figure 18 shows two of the six independent GPs over the data (t, Y obs
j ), for j = 1 and 4. These

corresponds to the pressure p1 and flow q1 in the first vessel. Similar plots are obtained for the
remaining two vessels. Each GP has an estimated kernel hyperparameter σsignal, which is used
to obtain the corresponding estimate of the noise standard deviation σ̂j , shown in Table 12.

We ran the BO algorithm with the Scaled Expected Improvement acquisition function for a
budget of nmax = 300 function evaluations, obtaining the following minimizer of (31):

xmin = 74760
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Table 12: Estimated noise standard deviations

σ̂1 σ̂2 σ̂3 σ̂4 σ̂5 σ̂6

1.8641 1.6501 1.9032 0.0039 0.0004 0.0018

while an estimate of the standard deviation at the minimizer was obtained using the Cramer-Rao
lower bound method:

std = 364

The optimization curve, i.e. the incumbent minimum fmin vs n, is shown in Figure 19. The
parameter estimate was obtained in approximately 30 minutes CPU time on a MacBook Pro
with 2.6 GHz six-core Intel Core i7 processor.

The submission also required a forward simulation from the PDE model of the pulmonary
circulation at the estimated parameter xmin, shown in red in Figure 20 for the first vessel. Similar
plots are obtained for the 2nd and 3rd vessels.

5.7 Gaussian process regression (Results Model 3)

The GP regressions discussed in Section 3.7.4 were used to infer the parameters of the model (7)–
(11) for the two datasets (for Model 3 and Additional Challenge) provided by the Organisers.
The submitted results, which in both cases ranked 1st in the Competition, are reported in
Table 13 together with the resulting errors with respect to the true values (disclosed after the
submission). The shaded fields refer to the cases for which the true parameter values were outside
the prior domain discussed in Section 3.7.2, so that ex post the initial design turned out to be
little informative for these parameters. In the remaining cases we can see that the true values are
always in the estimated 2-standard deviation width credible intervals (with the sole exception of
Da for the Additional Challenge). This demonstrates the accuracy of the developed method for
this challenging problem. As expected, chemical signals are generally highly informative about
the model parameters, with the relative errors for Model 3 typically being several times lower
than for the Additional Challenge.

The estimates, in particular the parameter means, can be used to generate “predicted
datasets”. [18] discuss the qualitative and quantitative properties of outputs generated this
way. For Model 3, they report a close accordance between the true Competition data and the
“mean-predicted dataset”, both visually as well as in terms of several summary statistics. For the
Additional Challenge the reported agreement is somewhat less evident, however it is still better
than for the dataset generated using the default parameters θ̃, demonstrating the usefulness of
the proposed method even for the nontrivial case of partly observed system.

5.8 Approximate Bayesian computation (Results Model 3 additional
challenge)

The ABC SMC algorithm, described in Section 3.8, is applied to the system described in equa-
tions 7 – 11. The implementation from the EasyABC package [21] in R was used to run the
ABC SMC algorithm.

For each of the two challenges, Model 3 and the Additional challenge, we use the GP regres-
sion estimates presented in section 5.7 to obtain summary statistics for each parameter. The
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Euclidean distance is calculated between the summary statistics obtained from the GP regression
prediction on the competition data and the GP regression prediction on particles proposed by
the algorithm.

The ABC SMC algorithm is started from uniform priors for each parameter: U(0.3θ, 2θ).
The tolerance levels for Model 3 are chosen as ϵ1 = 40, ϵ2 = 20, ϵ3 = 10, ϵ4 = 5 and for the
Additional challenge: ϵ1 = 20, ϵ2 = 10, ϵ3 = 5, ϵ4 = 2.5. Due to time constraints, the number of
particles for each intermediary distribution was set to N = 40. This resulted in the following
acceptance rates for each intermediary distribution: 97.56%, 66.67%, 16.06%, 3.68% for Model
3 and 81.63%, 75.47%, 51.28%, 21.16% for the Additional challenge.

These results could be improved by increasing the number of particles and decreasing the
tolerance level, however, this would results in significantly longer running times since one iter-
ation of the algorithm lasts around 4-5 minutes. Furthermore, a wider prior distribution might
be a fair consideration since the prior distribution used to obtain these results proved to be too
narrow and 3 of the true parameter values (across both competitions) were outside the bounds.
The bounds for the prior distribution were informed by the initial design used to train the GP
regression estimates, so it is expected that predictions outside these bounds will not be very
reliable.

Table 14 and Figures 21 and 22 present the MAP estimates obtained from both challenges.
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Figure 6: Outputs from two simulations run with different θ (top and bottom panel). Below, T =

{1, 2, . . . , 1000}. For each panel, from left to right, top row: cell membrane evolution in time for t ∈ T
(the darker the shade, the later the time point); cell membrane evolution in time for t = 1, 101, . . . , 901;

time series of GI for t ∈ T (left axis) and for t ≥ 100 (right axis); time series of area (left axis) and

perimeter (right axis); time series of area-perimeter ratios. Second row: cell contour at t = 100; value

of S over the cell membrane at t = 100; value of S over the cell membrane at t = 500; value of S over

the cell membrane at t = 1000; time series of means over space of S for t ∈ T (left axis) and for t ≥ 100

(right axis). Third row: cell contour at t = 500; value of LA over the cell membrane at t = 100; value

of LA over the cell membrane at t = 500; value of LA over the cell membrane at t = 1000; time series of

means over space of LA for t ∈ T (left axis) and for t ≥ 100 (right axis). Bottom row: cell contour at

t = 1000; value of LI over the cell membrane at t = 100; value of LI over the cell membrane at t = 500;

value of LI over the cell membrane at t = 1000; time series of means over space of LI for t ∈ T (left

axis) and for t ≥ 100 (right axis). 40



Figure 7: Timeseries plots of E (left), h (middle) and n (right).

Figure 8: Simulated dynamics for two k1 values below the reference value: k1 = −0.1 (left
panel) and k1 = 0 (right panel). Each panel has contain timeseries plots of E (left), h
(middle) and n (right).
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Figure 9: Simulated dynamics for two k1 values above the reference value: k1 = 0.2 (left panel)
and k1 = 0.3 (right panel). Each panel has contain timeseries plots of E (left), h (middle)
and n (right).

Figure 10: Original(solid black) and model(solid blue) fit of E, h and n using true and
estimated parameters respectively wile the measured data of E, h and n are the red dots.
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Figure 11: Marginal posterior distributions in the transformed parameter space, obtained from
three independent MCMC chains. Black lines show the MAP estimate, which corresponds to
the submitted parameter values. Red dashed lines indicate the values used to generate the
competition data.
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Figure 12: The 2D pairwise marginal plots for the posterior distribution in the parameter
transformed space. One of the three independently run MCMC chains is shown. Black dashed
lines show the true values in the competition.
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Figure 13: The posterior predictions of the model. The blue lines show the simulation outputs
using the parameter samples from the MCMC chains, which represent our belief about possible
model outputs underlying the given noisy data set, shown as grey crosses. The black dotted
lines show the mean of the predictions, which should represent our best belief of the model
output. The orange dash-dotted lines are our MAP estimate prediction, which are very close to
the posterior predictive mean. Finally, the red dashed lines show the model output using the
values used to generate the competition data. The panels on the right zoom in on the beginning
of the simulation, showing the rapid upstroke of the action potential.

Figure 14: The 1D marginal plots for the posterior distribution in the model parameter space.
The same three independently run MCMC chains in Figure 11 are shown. Black lines show the
MAP estimate, which is our submitted parameter values. Red dashed lines indicate the true
values in the competition.
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Figure 15: The 1D hyperline of the log-likelihood drawn from the true model parameter values
to the obtained MAP model parameter values. A non-convex type hyperline suggests that the
log-likelihood function is non-Gaussian and hence precision matrix approximation is not ideal.

Figure 16: Residual sum-of-squares (RSS) against the stiffness parameter.
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Figure 17: Optimised blood flow and pressure signals in the first pulmonary vessel (main pul-
monary artery).
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Figure 18: Univariate GPs for the first vessel. The observed data are shown as blue dots, the
red line is the GP mean, while the dotted red lines denote the 95% confidence interval.
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Figure 19: Optimization trace.
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Figure 20: Best-fit pressure and flow curves in the first vessel using the the estimated parameter.
The observed data are shown as blue dots, while the 1st and 4th columns of M(xmin) are shown
as red curves.
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Model 3

fa rc kb db Db

θ̂i 0.0030 0.0541 0.0041 0.0142 0.0617

std(θ̂i) (0.0010) (0.0175) (0.0010) (0.0033) (0.0132)

θi 0.0032 0.0500 0.0035 0.0130 0.0600
|θ̂i−θi|

θi
0.0730 0.0827 0.1840 0.0933 0.0290

kM sa ba Da da

θ̂i 0.2474 8.066e-5 0.1395 0.0299 0.0240

std(θ̂i) (0.0433) (0.0011) (0.0417) (0.0068) (0.0029)

θi 0.3000 8.000e-5 0.3000 0.0250 0.0250
|θ̂i−θi|

θi
0.1754 0.0083 0.5351 0.1976 0.0395

Additional challenge

fa rc kb db Db

θ̂i 0.0024 0.0801 0.0037 0.0167 0.0541

std(θ̂i) (0.0010) (0.0326) (0.0011) (0.0045) (0.0204)

θi 0.0040 0.0900 0.0020 0.0100 0.0500
|θ̂i−θi|

θi
0.3921 0.1098 0.8286 0.6719 0.0816

kM sa ba Da da

θ̂i 0.2103 7.650e-5 0.1220 0.0366 0.0176

std(θ̂i) (0.0635) (0.0010) (0.0458) (0.0101) (0.0105)

θi 0.1000 7.000e-5 0.0750 0.0150 0.0200
|θ̂i−θi|

θi
1.1034 0.0929 0.6267 1.4398 0.1201

Table 13: Submitted results: means θ̂i and standard deviations (in parentheses) for Model 3
and Additional Challenge, together with the ground truth values θi and relative absolute error.
Shaded fields indicate the cases for which the ground truth values were outside the prior range.
Table adapted from [18].
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fa rc kb db Db kM sa ba Da da

Model 3

θ̂i 0.0027 0.0315 0.0040 0.0081 0.0752 0.1826 5.927e-5 0.1007 0.0296 0.0352

std(θ̂i) (0.0002) (0.0226) (0.0009) (0.0058) (0.0180) (0.0690) (3.306e-5) (0.0387) (0.0096) (0.0072)

θi 0.0032 0.0500 0.0035 0.0130 0.0600 0.3000 8.000e-5 0.3000 0.0250 0.0250
|θ̂i−θi|

θi
0.1718 0.3698 0.1562 0.3773 0.2540 0.3913 0.2591 0.6644 0.1850 0.4085

Additional challenge

θ̂i 0.0023 0.1187 0.0031 0.0115 0.0668 0.2072 4.705e-5 0.0932 0.0234 0.0188

std(θ̂i) (0.0006) (0.0346) (0.0012) (0.0045) (0.0198) (0.0750) (3.301e-5) (0.0392) (0.0102) (0.0078)

θi 0.0040 0.0900 0.0020 0.0100 0.0500 0.1000 7.000e-5 0.0750 0.0150 0.0200
|θ̂i−θi|

θi
0.4349 0.3192 0.5731 0.1522 0.3353 1.0725 0.3278 0.2430 0.5580 0.0575

Table 14: ABC SMC results submitted to the Cside competition: MAP estimates θ̂i and standard
deviations (in parentheses) for Model 3 and Additional Challenge, together with the ground truth
values θi and relative absolute error. Shaded fields indicate the cases for which the ground truth
values were outside the prior range. The relative absolute error for Model 3 is 3.237 and for the
Additional challenge is 4.438.
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Figure 21: ABC SMC results for the pseudopod model, Model 3, for each of the ten unknown
parameters: fa, rc, kb, db, Db, sa, kM , bA, Da, da. Each plot shows 4 intermediary posterior dis-
tributions, from Step 1 (green) to Step 4 (red), corresponding to decreasing tolerance levels
ϵ1 = 40, ϵ2 = 20, ϵ3 = 10, ϵ4 = 5 and N = 40 particles. The final MAP estimates, obtained
from the approximate posterior at Step 4 are shown as a dotted line and the true values as a
continuous line.
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Figure 22: ABC SMC results for the pseudopod model, Additional challenge, for each of the
ten unknown parameters: fa, rc, kb, db, Db, sa, kM , bA, Da, da. Each plot shows 4 intermediary
posterior distributions, from Step 1 (green) to Step 4 (red), corresponding to decreasing tolerance
levels ϵ1 = 20, ϵ2 = 10, ϵ3 = 5, ϵ4 = 2.5 and N = 40 particles. The final MAP estimates, obtained
from the approximate posterior at Step 4 are shown as a dotted line and the true values as a
continuous line.
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